Implementation

The goal of this document is to describe how the library is implemented.

Field operations

These are implemented in Field_element, which is a binding over p256_{32,64}.h. These are files extracted from Coq code in this repository.

This module uses Montgomery Modular Multiplication. Instead of storing a number a, operations are done on aR where R = 2256.

It is possible to check that these files correspond to the extracted ones in the upstream repository by running dune build @check_vendors.

These files are part of the trusted computing base. That is, using this package relies on the fact that they implemented the correct algorithms. To go further, one can re-run the extraction process from Coq sources, see #41.

Point operations

Points (see the Point module) are stored using projective coordinates (X : Y : Z):

Doubling and addition are implemented as C stubs in p256_stubs.c using code that comes from BoringSSL, Google's fork of OpenSSL. Fiat code has been design in part to be included in BoringSSL, so this does not require any particular glue code.

Some operations are implemented manually, in particular:

There is no automated way to check that the BoringSSL part is identical to that in the upstream repository (nor to update it).

Scalar multiplication

Implemented by hand using the Montgomery Powering Ladder.

Instead of branching based on key bits, constant-time selection (as defined in fiat code) is used.

The following references discuss this algorithm:

Key exchange

Key exchange consists in

This is implemented by hand and checked against common errors using test vectors from project Wycheproof.